Concept

# Lissage (mathématiques)

Résumé
In statistics and , to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal. Smoothing may be used in two important ways that can aid in data analysis (1) by being able to extract more information from the data as long as the assumption of smoothing is reasonable and (2) by being able to provide analyses that are both flexible and robust. Many different algorithms are used in smoothing. Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one; the aim of smoothing is to give a general idea of relatively slow changes of value with little attention paid to the close matching of data values, while curve fitting concentrates on achieving as close a match as possible. smoothing methods often have an associated tuning parameter which is used to control the extent of smoothing. Curve fitting will adjust any number of parameters of the function to obtain the 'best' fit. In the case that the smoothed values can be written as a linear transformation of the observed values, the smoothing operation is known as a linear smoother; the matrix representing the transformation is known as a smoother matrix or hat matrix. The operation of applying such a matrix transformation is called convolution. Thus the matrix is also called convolution matrix or a convolution kernel. In the case of simple series of data points (rather than a multi-dimensional image), the convolution kernel is a one-dimensional vector.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (16)

Chargement

Chargement

Chargement

Personnes associées (11)
Unités associées

Aucun résultat

Concepts associés (8)
Estimation spectrale
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Régression locale
La régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Lissage (mathématiques)
vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.
Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).