Wireless Powering Efficiency of Deep-Body Implantable Devices
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the development of implantable bioelectronics, the establishment of efficient wireless RF links between implants and external nodes is crucial, providing substantial contributions to the advancement of medical diagnosis, therapies, and basic science. Im ...
The auxiliary power supply for medium voltage converters requires high insulation capability between the source and the load. Inductive power transfer technology, with an air gap between the primary and secondary coil, offers such high insulation capabilit ...
Over the last decades, implantable neural interfaces have been extensively explored and effectively deployed to address neurological and mental health disorders. The existing solutions present several limitations. Firstly, the physical size of the implanta ...
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
Wireless data communication could improve the performance and reliability of biomedical implants used in fundamental neuroscience research by removing infection-prone transcutaneous cabling. The small size of common research animals like mice and rodents, ...
The viable and safe application of wireless power transfer for powering bioelectronic implants requires understanding the wave propagation in heterogeneous and dispersive media, the electromagnetic exposure assessment, and the optimum design of the system ...
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
Brain-computer interfaces (BCIs) are neural prosthetics that enable closed-loop electrophysiology procedures. These devices are currently used in fundamental neurophysiology research, and they are moving toward clinical viability for neural rehabilitation. ...
The purpose of this research has a background in the market for Internet of Things (IoT)devices and wireless sensor networks. The Market Forecast predicts the connection of a trillion"things" by 2025. The global smart sensor market size trend grows from US ...
The efficiency of an on-body wireless power transfer system for implant powering is defined by how the electromagnetic energy interacts with the lossy, heterogeneous, and dispersive body tissues. The objective of this study is to discuss the methodology an ...