Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Quality (business)In business, engineering, and manufacturing, quality – or high quality – has a pragmatic interpretation as the non-inferiority or superiority of something (goods or services); it is also defined as being suitable for the intended purpose (fitness for purpose) while satisfying customer expectations. Quality is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people. Consumers may focus on the specification quality of a product/service, or how it compares to competitors in the marketplace.
Management de la qualitévignette|La roue de Deming illustre le processus d'amélioration continue, l'un des principes fondamentaux du management de la qualité. Le management de la qualité, ou gestion de la qualité, est une discipline du management regroupant l'ensemble des concepts et méthodes visant à satisfaire les clients d'un organisme (en général les entreprises, associations, organismes publics) et à fournir des produits et services correspondant à leurs attentes.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Assurance qualitéOn désigne par assurance qualité un moyen d'obtenir confiance dans l'assurance de la qualité c'est-à-dire dans l'aptitude de la société ou de l'organisation à satisfaire le niveau de qualité désiré. Le terme « assurance qualité » qui élide les articles naturellement présents dans la langue française est très commun du fait que le concept a été importé (anglicisme) de la langue anglaise où l'on parle de Quality assurance. Le terme assurance a donc ici la valeur de confiance que lui donne la langue anglaise.
Contrôle qualitévignette|Contrôle qualité du nylon, 1954, Malmö. Photographie conservée au musée nordique. Le contrôle qualité est un aspect de la gestion de la qualité. Le contrôle est une opération destinée à déterminer, avec des moyens appropriés, si le produit (y compris, services, documents, code source) contrôlé est conforme ou non à ses spécifications ou exigences préétablies et incluant une décision d'acceptation, de rejet ou de retouche. L'ancienne norme ISO 8402 (maintenant annulée) en donnait la définition suivante : (ISO8402:1994, § 2.
Système de management de la qualitéUn système de management de la qualité (SMQ) ou système de gestion de la qualité (SGQ) (en anglais quality management system) est l'ensemble des activités par lesquelles l’organisme définit, met en œuvre et revoit sa politique et ses objectifs qualité conformément à sa stratégie. Le SMQ d'un organisme est constitué de processus corrélés et interactifs utilisant des ressources pour atteindre les résultats visés et fournir de la valeur (produit, service, etc.).
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Batch normalizationBatch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015. While the effect of batch normalization is evident, the reasons behind its effectiveness remain under discussion. It was believed that it can mitigate the problem of internal covariate shift, where parameter initialization and changes in the distribution of the inputs of each layer affect the learning rate of the network.