Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Mémoire (psychologie)thumb|350px|Les formes et fonctions de la mémoire en sciences. En psychologie, la mémoire est la faculté de l'esprit d'enregistrer, conserver et rappeler les expériences passées. Son investigation est réalisée par différentes disciplines : psychologie cognitive, neuropsychologie, et psychanalyse. thumb|Pyramide des cinq systèmes de mémoire. Le courant cognitiviste classique regroupe habituellement sous le terme de mémoire les processus dencodage, de stockage et de récupération des représentations mentales.
Sample maximum and minimumIn statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot. The minimum and the maximum value are the first and last order statistics (often denoted X(1) and X(n) respectively, for a sample size of n).
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Méthode expérimentaleLes méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l'on fait varier est impliqué dans l'hypothèse. Le résultat de l'expérience valide ou non l'hypothèse. La démarche expérimentale est appliquée dans les recherches dans des sciences telles que, par exemple, la biologie, la physique, la chimie, l'informatique, la psychologie, ou encore l'archéologie.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Donnée aberrantevignette|Ce graphique permet de visualiser la répartition de doyens selon leur âge de décès et l'âge de décès moyen des doyens de leur époque. Le record de longévité de Jeanne Calment constitue une anomalie statistique qui continue d'intriguer les gérontologues. En statistique, une donnée aberrante (anglais outlier) est une valeur ou une observation qui est « distante » des autres observations effectuées sur le même phénomène, c'est-à-dire qu'elle contraste grandement avec les valeurs « normalement » mesurées.
Système de détection d'intrusionUn système de détection d'intrusion (ou IDS : Intrusion detection System) est un mécanisme destiné à repérer des activités anormales ou suspectes sur la cible analysée (un réseau ou un hôte). Il permet ainsi d'avoir une connaissance sur les tentatives réussie comme échouées des intrusions. Il existe deux grandes catégories d'IDS, les plus connues sont les détections par signatures (reconnaissance de programme malveillant) et les détections par anomalies (détecter les écarts par rapport à un modèle représentant les bons comportements, cela est souvent associé a de l'apprentissage automatique).
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.