Détecteur d'anomalie magnétiquevignette|Consolidated PBY-5A Catalina traînant un détecteur d'anomalie magnétique au bout d'un câble (1943). La queue de l'appareil semble aussi comporter une perche détecteur. Un détecteur d'anomalie magnétique est un système électronique utilisant le principe du magnétomètre permettant de détecter à distance des masses métalliques sous la surface de l'eau. Il sert essentiellement à confirmer la présence de sous-marins et est aussi connu sous l'abréviation anglaise MAD (magnetic anomaly detector).
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Mémoire à court termeLa mémoire à court terme (MCT) désigne en psychologie le type de mémoire qui permet de retenir et de réutiliser une quantité limitée d'informations pendant un temps relativement court, environ une demi-minute. Un grand nombre de recherches en psychologie cognitive ont cherché à déterminer les caractéristiques (capacité, durée, fonctionnement) et le rôle de la mémoire à court terme dans la cognition. Le concept de mémoire à court terme est assez ancien en psychologie scientifique.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Long short-term memoryLong short-term memory (LSTM) network is a recurrent neural network (RNN), aimed to deal with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps, thus "long short-term memory".
Loi gamma-normaleEn théorie des probabilités et en statistiques, la loi gamma-normale (ou Gamma- Gaussienne) est une distribution bivariée continue à quatre paramètres. Elle est la prieure conjuguée de la loi normale de moyenne et variance inconnues. Soit une paire de variable aléatoires (X,T). Si la distribution conditionnelle de X sachant T est normale de moyenne et variance et si la distribution marginale de T est une loi gamma alors (X,T) suit une loi gamma-normale, que l'on note La fonction de densité conjointe de (X,T) a la forme Par définition, la distribution marginale de est une loi gamma.
Mémoire à long termeEn psychologie cognitive, la mémoire à long terme (MLT) est la mémoire qui permet de retenir, de manière illimitée, une information sur des périodes de temps très longues (années). La notion de MLT est un concept utilisé dans les modèles de mémoire qui distinguent plusieurs sous-systèmes en fonction du type d'information mémorisé et de la durée de rétention. La mémoire à long terme s'oppose ainsi au registre sensoriel (ou mémoire sensorielle), à la mémoire à court terme et à la mémoire de travail.
Sampling distributionIn statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).