Publication

Adaptive analysis-aware defeaturing

Publications associées (112)

FENNECS: a novel particle-in-cell code for simulating the formation of magnetized non-neutral plasmas trapped by electrodes of complex geometries

Stefano Alberti, Jean-Philippe Hogge, Joaquim Loizu Cisquella, Jérémy Genoud, Francesco Romano

This paper presents the new 2D electrostatic particle-in-cell code FENNECS de- veloped to study the formation of magnetized non-neutral plasmas in geometries with azimuthal symmetry. This code has been developed in the domain of gy- rotron electron gun des ...
2024

Analytical Model of Single-Sided Linear Induction Motors for High-Speed Applications

André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

This article describes a field-based analytical model of single-sided linear induction motors (SLIMs) that explicitly considers the following effects altogether: finite motor length, magnetomotive force mmf space harmonics, slot effect, edge effect, and ta ...
2024

Low-Rank Tensor Methods for High-Dimensional Problems

Christoph Max Strössner

In this thesis, we propose and analyze novel numerical algorithms for solving three different high-dimensional problems involving tensors. The commonality of these problems is that the tensors can potentially be well approximated in low-rank formats. Ident ...
EPFL2023

A Shape Derivative Approach to Domain Simplification

Annalisa Buffa, Jochen Peter Hinz, Ondine Gabrielle Chanon, Alessandra Arrigoni

The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. ...
Oxford2023

Analysis-aware defeaturing of complex geometries with Neumann features

Pablo Antolin Sanchez, Ondine Gabrielle Chanon

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error ...
Hoboken2023

Adaptive analysis-aware defeaturing

Ondine Gabrielle Chanon

Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. However, ...
EPFL2022

Stabilized isogeometric discretizations on trimmed and union geometries, and weak imposition of the boundary conditions for the Darcy flow

Riccardo Puppi

Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finalized by simulating its physical behavior, which usually i ...
EPFL2022

An a posteriori error estimator for isogeometric analysis on trimmed geometries

Annalisa Buffa, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon

Trimming consists of cutting away parts of a geometric domain, without reconstructing a global parametrization (meshing). It is a widely used operation in computer-aided design, which generates meshes that are unfitted with the described physical object. T ...
2022

Analysis-aware defeaturing of complex geometries

Pablo Antolin Sanchez, Ondine Gabrielle Chanon

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error ...
2022

Fast global spectral methods for three-dimensional partial differential equations

Daniel Kressner, Christoph Max Strössner

Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
OXFORD UNIV PRESS2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.