Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Intérêt (finance)En finance, l'intérêt est la rémunération d'un prêt, sous forme généralement d'un versement périodique de l'emprunteur au prêteur. Pour le prêteur, c'est le prix de sa renonciation temporaire à la liquidité. Pour l'emprunteur, c'est un coût correspondant à une utilisation anticipée. Une épargne rémunérée par un intérêt est assimilable à un prêt fait à un emprunteur, comme une banque ou l'organisme bénéficiaire de cette épargne. Taux d'intérêt L'intérêt est proportionnel au capital et croît avec le temps couru.
Intérêts composésUn capital est placé à intérêts composés lorsque les intérêts de chaque période sont incorporés au capital pour l'augmenter progressivement et porter intérêts à leur tour. C'est une notion antagoniste à celle d'intérêts simples, où les intérêts ne sont pas réinvestis pour devenir à leur tour porteurs d'intérêts. Pour calculer des intérêts composés annuellement, il faut utiliser une suite géométrique, dont la formule est : où est la valeur finale, la valeur initiale, le taux d'intérêt sur une période, et le nombre de périodes (d'années, semestres, trimestres, etc.
Théorie du choix émotionnelLa théorie du choix émotionnel (également appelée logique de l'affect) est un modèle d'action scientifique sociale pour expliquer la prise de décision humaine. On doit cette approche Robin Markwica dans l'ouvrage Emotional Choices publiée par Oxford University Press en 2018. Cette théorie est considérée comme un modèle alternatif à la théorie du choix rationnel et aux perspectives constructivistes.
Théorème de Gauss-MarkovEn statistiques, le théorème de Gauss–Markov, nommé ainsi d'après Carl Friedrich Gauss et Andrei Markov, énonce que dans un modèle linéaire dans lequel les erreurs ont une espérance nulle, sont non corrélées et dont les variances sont égales, le meilleur estimateur linéaire non biaisé des coefficients est l'estimateur des moindres carrés. Plus généralement, le meilleur estimateur linéaire non biaisé d'une combinaison linéaire des coefficients est son estimateur par les moindres carrés.