TopographieLa topographie (du grec topos, « lieu », et graphein, « dessiner ») est la science qui permet la mesure puis la représentation sur un plan ou une carte des formes et détails visibles sur le terrain, qu'ils soient naturels (notamment le relief et l'hydrographie) ou artificiels (comme les bâtiments, les routes). Son objectif est de déterminer la position et l'altitude de n'importe quel point situé dans une zone donnée, qu'elle soit de la taille d'un continent, d'un pays, d'un champ ou d'un corps de rue.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Mémoire (psychologie)thumb|350px|Les formes et fonctions de la mémoire en sciences. En psychologie, la mémoire est la faculté de l'esprit d'enregistrer, conserver et rappeler les expériences passées. Son investigation est réalisée par différentes disciplines : psychologie cognitive, neuropsychologie, et psychanalyse. thumb|Pyramide des cinq systèmes de mémoire. Le courant cognitiviste classique regroupe habituellement sous le terme de mémoire les processus dencodage, de stockage et de récupération des représentations mentales.
Aménagement du territoirevignette|Un exemple d'aménagement du territoire : l'autoroute française A63 traversant les Landes. L'aménagement du territoire est . Cette discipline traduit l'ensemble d'actions menées par des acteurs publics (ou privés dans le cadre de missions de service public qui leur sont confiées) qui interviennent sur un territoire donné et en façonnent son paysage (routes, ponts, usines, etc.).
Système de transport intelligentLes systèmes de transport intelligents (STI) (en anglais : intelligent transportation systems - ITS) sont les applications des nouvelles technologies de l'information et de la communication au domaine des transports et de sa logistique. On les dit « intelligents » parce que leur développement repose sur des fonctions généralement associées à l'intelligence : capacités sensorielles et de choix, mémoire, communication, traitement de l'information et comportement adaptatif.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
Non-negative matrix factorizationNon-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered.
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.