Publication

An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state EEG

Concepts associés (33)
Électroencéphalographie
L'électroencéphalographie (EEG) est une méthode d'exploration cérébrale qui mesure l'activité électrique du cerveau par des électrodes placées sur le cuir chevelu souvent représentée sous la forme d'un tracé appelé électroencéphalogramme. Comparable à l'électrocardiogramme qui permet d'étudier le fonctionnement du cœur, l'EEG est un examen indolore et non invasif qui renseigne sur l'activité neurophysiologique du cerveau au cours du temps et en particulier du cortex cérébral soit dans un but diagnostique en neurologie, soit dans la recherche en neurosciences cognitives.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Transformeur
vignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Rythme cérébral
Un rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Apprentissage par renforcement profond
L'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Attention (machine learning)
Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Clinical research
Clinical research is a branch of healthcare science that determines the safety and effectiveness (efficacy) of medications, devices, diagnostic products and treatment regimens intended for human use. These may be used for prevention, treatment, diagnosis or for relieving symptoms of a disease. Clinical research is different from clinical practice. In clinical practice established treatments are used, while in clinical research evidence is collected to establish a treatment.
Réduction (complexité)
En calculabilité et en théorie de la complexité, une réduction est un algorithme transformant une instance d'un problème algorithmique en une ou plusieurs instances d'un autre problème. S'il existe une telle réduction d'un problème A à un problème B, on dit que le problème A se réduit au problème B. Dans ce cas, le problème B est plus difficile que le problème A, puisque l'on peut résoudre le problème A en appliquant la réduction puis un algorithme pour le problème B. On écrit alors A ≤ B.
Électroencéphalographie intracrânienne
L'électroencéphalographie intracrânienne dite aussi intra-cérébrale, sous-durale, stéréotaxique (SEEG) est une méthode d'enregistrement de l'activité du cerveau au moyen d'électrodes implantées en profondeur sous la boîte crânienne utilisée notamment en neurologie, dans le diagnostic pré-chirurgical de l'épilepsie.
Médecine fondée sur les faits
La médecine fondée sur les faits (ou médecine fondée sur les données probantes ; voir les autres synonymes) se définit comme . On utilise plus couramment le terme anglais , et parfois les termes médecine fondée sur les preuves ou médecine factuelle. Ces preuves proviennent d'études cliniques systématiques, telles que des essais contrôlés randomisés en double aveugle, des méta-analyses, éventuellement des études transversales ou de suivi bien construites.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.