Publication

Efficient Distributed Transposition Of Large-Scale Multigraphs And High-Cardinality Sparse Matrices

Résumé

Graph-based representations underlie a wide range of scientific problems. Graph connectivity is typically represented as a sparse matrix in the Compressed Sparse Row format. Large-scale graphs rely on distributed storage, allocating distinct subsets of rows to compute nodes. Efficient matrix transpose is an operation of high importance, providing the reverse graph pathways and a column-ordered matrix view. This operation is well studied for simple graph models. Nevertheless, its resolution for multigraphs and higher-cardinality connectivity matrices is unexistent. We advance state-of-the-art distributed transposition methods by providing a theoretical model, algorithmic details, MPI-based implementation and proof of mathematical soundness for such complex models. Benchmark results demonstrate ideal and almost ideal scaling properties for perfectly- and heterogeneously-balanced datasets, respectively

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.