Une matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité.
Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ
ou les matrices de permutation, comme
Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A.
Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1. Ainsi une matrice orthogonale représente une base orthonormée.
Également, une matrice carrée est orthogonale si et seulement si sa transposée l'est ( A A = I), donc si et seulement si ses vecteurs lignes sont orthogonaux deux à deux et de norme 1.
Le déterminant d'une matrice orthogonale est de carré 1, c'est-à-dire qu'il est égal à +1 ou –1 (la réciproque est trivialement fausse). Une matrice orthogonale est dite directe si son déterminant vaut +1 et indirecte s'il vaut –1.
Le conditionnement d'une matrice orthogonale est égal à 1.
La multiplication d'un vecteur par une matrice orthogonale préserve la norme euclidienne (associée au produit scalaire canonique de R) de ce vecteur.
L'ensemble de ces matrices est un groupe appelé groupe orthogonal et noté O(n, R). Il s'interprète de manière géométrique comme étant l'ensemble des isométries vectorielles, aussi appelées automorphismes orthogonaux, de l'espace euclidien R. Plus précisément, un endomorphisme d'un espace euclidien est orthogonal si, et seulement s'il existe une base orthonormée dans laquelle sa matrice est orthogonale (et si tel est le cas, sa matrice dans toute base orthonormée sera encore orthogonale).
L'ensemble des matrices orthogonales directes (de déterminant égal à 1) forme un sous-groupe du groupe orthogonal, appelé groupe spécial orthogonal et noté SO(n, R). En dimension 3, il s'interprète de manière géométrique comme étant l'ensemble des rotations de l'espace euclidien R (l'axe de rotation étant donné par le sous-espace propre associé à la valeur propre +1).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Soit E un espace vectoriel euclidien. Une rotation vectorielle de E est un élément du groupe spécial orthogonal SO(E). Si on choisit une base orthonormée de E, sa matrice dans cette base est orthogonale directe. Matrice de rotation Dans le plan vectoriel euclidien orienté, une rotation vectorielle est simplement définie par son angle . Sa matrice dans une base orthonormée directe est : Autrement dit, un vecteur de composantes a pour image le vecteur de composantes que l'on peut calculer avec l'égalité matricielle : c'est-à-dire que l'on a : et Si par exemple et , désigne un des angles du triangle rectangle de côtés 3, 4 et 5.
Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
Couvre les fondements théoriques de la décomposition de la valeur singulaire, expliquant la décomposition d'une matrice en valeurs et vecteurs singuliers.
Materials for high -temperature environments are actively being investigated for deployment in aerospace and nuclear applications. This study uses computational approaches to unravel the crystallography and thermodynamics of a promising class of refractory ...
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...