ÉlectrophysiologieL'électrophysiologie (du grec el, elektron, el, physis, nature, et -el, -logia, étude) est l'étude des phénomènes électriques et électrochimiques qui se produisent dans les cellules ou les tissus des organismes vivants et, en particulier, dans les neurones et les fibres musculaires et chez les plantes sensitives (étudiées depuis le début du siècle de ce point de vue, dont par Jagadish Chandra Bose). Elle implique la mesure de différences de tensions ou de courants électriques à différentes échelles biologiques, du canal ionique isolé, jusqu'à des organes entiers, comme le cœur.
Circuit LCUn circuit LC est un circuit électrique contenant une bobine (L) et un condensateur (Capacité). C'est ainsi qu'on obtient le phénomène de résonance électrique. Ce type de circuit est utilisé dans les filtres, les tuners et les mélangeurs de fréquences. Par conséquent, son utilisation est répandue dans les transmissions sans fil en radiodiffusion, autant pour l'émission que la réception. thumb|200px|Circuit LC série et parallèle thumb|upright=1.
Circuit RLCEn électrocinétique, un circuit RLC est un circuit linéaire contenant une résistance électrique, une bobine (inductance) et un condensateur (capacité). Il existe deux types de circuits RLC, série ou parallèle selon l'interconnexion des trois types de composants. Le comportement d'un circuit RLC est généralement décrit par une équation différentielle du second ordre (là où des circuits RL ou circuits RC se comportent comme des circuits du premier ordre).
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
Neuronethumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Transfert de connaissancesvignette|Logo illustratif de The Noun Project. Le transfert de connaissances ou compétences, dans les domaines du développement et de l’apprentissage de l'organisation, est le problème pratique de la transmission de données d’une partie de l’organisation à une autre (ou aux autres) partie(s). Le transfert de connaissances ne recouvre qu'une partie de la problématique du transfert de compétences pour les structures.