Congruence (géométrie)En géométrie euclidienne, la congruence est une relation sur l'ensemble des parties de l'espace considéré : deux ensembles de points sont dits si l'un est l' de l'autre par une isométrie (une bijection qui conserve les distances). De manière moins formelle, deux figures sont congruentes si elles ont la même forme et la même taille, mais ont des positions respectives différentes. La congruence est une relation d'équivalence plus fine que la similitude : par exemple, deux triangles isométriques sont toujours semblables.
Art algorithmiqueL'art algorithmique, également connu sous le nom d'art des algorithmes, est l'art, et plus précisément l'art visuel, dont la conception est générée par un algorithme. Les artistes algorithmiques sont parfois appelés algoristes. L'art algorithmique est un sous-domaine de l'art génératif (généré par un système autonome) et est lié à l'art des systèmes (influencé par la théorie des systèmes). L'art fractal est un exemple d'art algorithmique. gauche|vignette|Figures géométriques arabes dans le temple de Darb-e Emam à Isfahan, précurseurs de l'art algorithmique.
Méthode essai-erreurLa méthode essai-erreur ou méthode essai et erreur est une méthode fondamentale de résolution de problèmes. Elle est caractérisée par des essais divers qui sont continués jusqu'au succès de la recherche ou jusqu'à ce que le testeur arrête sa recherche. En science informatique, la méthode est appelée « generate and test ». En algèbre élémentaire, pour la résolution d'équations elle prend le nom de « guess and check » (« supposer et vérifier »).
Meta-optimizationIn numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm. Meta-optimization and related concepts are also known in the literature as meta-evolution, super-optimization, automated parameter calibration, hyper-heuristics, etc.
Carré gréco-latinUn 'carré gréco-latin' ou carré eulérien d'ordre n, sur deux ensembles G et L de chacun n symboles, est un tableau carré de n lignes et n colonnes, contenant les n couples de , et où toute ligne et toute colonne contient exactement une fois chaque élément de L (en première position dans l'un des n couples) et chaque élément de G (en seconde position). Il s'agit de la superposition de deux carrés latins orthogonaux l'un à l'autre. On dit aussi « carré bilatin ».
Orthogonal arrayIn mathematics, an orthogonal array (more specifically, a fixed-level orthogonal array) is a "table" (array) whose entries come from a fixed finite set of symbols (for example, {1,2,...,v}), arranged in such a way that there is an integer t so that for every selection of t columns of the table, all ordered t-tuples of the symbols, formed by taking the entries in each row restricted to these columns, appear the same number of times. The number t is called the strength of the orthogonal array.
No free lunch in search and optimizationIn computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. The name alludes to the saying "no such thing as a free lunch", that is, no method offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure (e.
ParallélogrammeEn géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leur milieu. En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes : les vecteurs et sont égaux ; les vecteurs et sont égaux. Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC).
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.