En géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leur milieu.
En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes :
les vecteurs et sont égaux ;
les vecteurs et sont égaux.
Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC).
En géométrie euclidienne, sous cette même hypothèse, ces propriétés sont aussi équivalentes à :
le quadrilatère est non croisé et ses côtés opposés sont de même longueur deux à deux ;
il est convexe et ses angles opposés ont la même mesure deux à deux ;
ses angles consécutifs sont supplémentaires deux à deux ;
c'est un trapèze (non croisé) dont les bases ont même longueur.
Tout parallélogramme a un centre de symétrie : le point d'intersection de ses diagonales.
Dans tout parallélogramme ABCD, on a l'identité du parallélogramme : AC + BD = 2(AB + BC).
Les angles d'un parallélogramme qui se suivent sont supplémentaires
Les angles opposés sont égaux
Un losange est un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il est même équilatéral.
Un rectangle est un parallélogramme ayant au moins un angle droit. Il est même équiangle.
Un carré est un losange rectangle.
Soient la longueur d'un côté du parallélogramme et la longueur de la hauteur associée. L'aire du parallélogramme vaut :
L'aire d'un parallélogramme est aussi donnée par un déterminant.
Antiparallélogramme
Un antiparallélogramme est un quadrilatère croisé dont les côtés opposés ont la même longueur deux à deux.
Dans un antiparallélogramme, les angles opposés ont la même mesure en valeur absolue.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...
We conducted atomic-scale scanning tunneling microscopy of a graphene nanosheet on graphite. In addition to a rhombus lattice representing the (root 3x root 3)R30 degrees superstructure, we resolved another quadrangle lattice similar to a rectangle in the ...
Twisted bilayer graphene (TBG) is a two-dimensional chiral material whose optical activity is remarkably strong for its atomic thickness. While the chiral optical properties of TBG are currently well understood, the optical activity of quantum dots (QDs) m ...
Un losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
En géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits. Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé. Fichier:Six Quadrilaterals.svg|Quadrilatères. Les deux situés en haut à gauche (vert et marron) sont des rectangles. Fichier:Rectangle 2.svg|Un rectangle, ses deux diagonales et un [[angle droit]] codé.
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Les structures en treillis, en poutre, en dalles et en cadre sont essentielles pour une grande partie des constructions modernes : immeubles pour l'habitation ou de bureaux, halles et usines, ponts, o