Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Système multi-agentsEn informatique, un système multi-agent (SMA) est un système composé d'un ensemble d'agents (un processus, un robot, un être humain, une fourmi etc.), actifs dans un certain environnement et interagissant selon certaines règles. Un agent est une entité caractérisée par le fait qu'elle est, au moins partiellement, autonome, ce qui exclut un pilotage centralisé du système global.
Topologie de réseauvignette Une topologie de réseau informatique correspond à l'architecture (physique, logicielle ou logique) de celui-ci, définissant les liaisons entre les équipements du réseau et une hiérarchie éventuelle entre eux. Elle peut définir la façon dont les équipements sont interconnectés et la représentation spatiale du réseau (topologie physique). Elle peut aussi définir la façon dont les données transitent dans les lignes de communication (topologies logiques).
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Topologie finaleEn mathématiques et plus précisément en topologie, la topologie finale, sur un ensemble d'arrivée commun à une famille d'applications définies chacune sur un espace topologique, est la topologie la plus fine pour laquelle toutes ces applications sont continues. La notion duale est celle de topologie initiale. Soient X un ensemble, (Y) une famille d'espaces topologiques et pour chaque indice i ∈ I, une application f : Y → X. La topologie finale sur X associée à la famille (f) est la plus fine des topologies sur X pour lesquelles chaque f est continue.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
Production décentralisée (énergie)Aussi appelé production distribuée (calque de l'anglais), la production décentralisée est la production d'énergie électrique à l'aide d'installations de petite capacité raccordées au réseau électrique à des niveaux de tension peu élevée : basse ou moyenne tension. thumb|upright=1.2|Éolienne urbaine de 2 m de diamètre, puissance 1,75 kW à 14 m/s, Saint-Sébastien (Espagne), 2010. Spécialement développée pour obtenir un très faible niveau sonore. Hauteur du mât : 5,5 m, vitesse de démarrage : 2,5 m/s, durée de vie : 20 ans, conforme au code de l'urbanisme espagnol.