Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Quantum programmingQuantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs.
Cryptographie quantiqueLa cryptographie quantique consiste à utiliser les propriétés de la physique quantique pour établir des protocoles de cryptographie qui permettent d'atteindre des niveaux de sécurité qui sont prouvés ou conjecturés non atteignables en utilisant uniquement des phénomènes classiques (c'est-à-dire non-quantiques). Un exemple important de cryptographie quantique est la distribution quantique de clés, qui permet de distribuer une clé de chiffrement secrète entre deux interlocuteurs distants, tout en assurant la sécurité de la transmission grâce aux lois de la physique quantique et de la théorie de l'information.
Quantum networkQuantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Calcul quantique adiabatiqueLe calcul quantique adiabatique (en anglais, adiabatic quantum computation ou AQC) est une méthode de calcul quantique reposant sur le théorème adiabatique, qui peut être vu comme une sous-classe des méthodes de recuit simulé quantique. On détermine d'abord un hamiltonien complexe dont l'état fondamental décrit une solution du problème étudié. On prépare ensuite un système possédant un hamiltonien plus simple, que l'on initialise dans son état fondamental.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Intrication quantiqueEn mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.