Résumé
Le calcul quantique adiabatique (en anglais, adiabatic quantum computation ou AQC) est une méthode de calcul quantique reposant sur le théorème adiabatique, qui peut être vu comme une sous-classe des méthodes de recuit simulé quantique. On détermine d'abord un hamiltonien complexe dont l'état fondamental décrit une solution du problème étudié. On prépare ensuite un système possédant un hamiltonien plus simple, que l'on initialise dans son état fondamental. On fait alors évoluer adiabatiquement cet hamiltonien vers le hamiltonien complexe qu'on a déterminé ; d'après le théorème adiabatique, le système reste dans l'état fondamental, et son état final décrit une solution du problème envisagé. Le calcul adiabatique pourrait être un moyen de contourner le problème de la , analogue à celui de la décohérence pour les calculateurs quantiques usuels. Le système étant dans l'état fondamental, les interférences avec le monde extérieur ne peuvent faire descendre son énergie davantage ; d'autre part, si l'énergie extérieure (la « température du bain ») est maintenue plus basse que l'écart entre l'état fondamental et le premier état excité, le système a une probabilité faible (proportionnelle à cette énergie) de changer d'état. Le système peut ainsi rester dans un seul état propre aussi longtemps que nécessaire. Des résultats d'universalité pour le modèle adiabatique sont liés à la notion de complexité quantique et à l'existence de . Le hamiltonien k-local est QMA-complet pour k ≥ 2, et des résultats de QMA-difficulté sont connus pour les de qubits, par exemple : où représentent les matrices de Pauli . De tels modèles sont utilisés pour un calcul quantique adiabatique universel. Les hamiltoniens du problème QMA-complet peuvent aussi être restreints à agir sur une grille bidimensionnelle de qubits ou même sur une ligne de particules quantiques avec 12 états par particule ; si de tels modèles s'avéraient physiquement réalisables, ils pourraient également être utilisés comme blocs de construction d'un ordinateur quantique adiabatique universel.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.