La bande de fréquences térahertz désigne les ondes électromagnétiques s'étendant de (ou selon les références) à . Elle est intermédiaire entre les fréquences micro-ondes et les fréquences correspondant à l'infrarouge. Le domaine des fréquences « térahertz » (THz, 1 THz = 10 Hz) s'étend de à 30 THz environ, soit environ aux longueurs d'onde entre et . Il est historiquement connu sous la terminologie d'infrarouge lointain mais on le retrouve également aujourd'hui sous l'appellation de rayon T.
vignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz (abbreviated as THz). In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states.
A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz. This bandwidth is also known as the terahertz gap because it is noticeably underutilized. This is because terahertz waves are electromagnetic waves with frequencies higher than microwaves but lower than infrared radiation and visible light.
A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Un laser à rayon X, ou laser X-UV (soft x-ray laser en anglais, Roentgen laser en allemand) est un dispositif qui transpose le principe et les propriétés du laser aux ondes électromagnétiques de courte longueur d'onde : de l'ultraviolet extrême aux rayons X. On distingue deux types de lasers à rayons X : les lasers X à électrons libres (XFEL ou x-ray free electron laser) et les lasers X à plasma (Plasma-based soft x-ray laser).
La spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
thumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
L'émission par effet de champ, ou, sous forme abrégée, lʼémission de champ, est l'émission d'électrons induits par des champs électromagnétiques externes. Elle peut avoir lieu à partir d'une surface solide ou liquide, ou bien directement au niveau d'un atome en milieu gazeux. La théorie d'émission par effet de champ à partir des métaux a été décrite la première fois par Fowler et Nordheim en 1928. Le courant d'émission électronique se calcule au moyen de l'équation dite de Fowler-Nordheim : avec Canon à éle