Publication

A type I conjecture and boundary representations of hyperbolic groups

Nicolas Monod
2023
Article
Résumé

We establish new results on the weak containment of quasi-regular and Koopman representations of a second countable locally compact group GGG associated with nonsingular GGG-spaces. We deduce that any two boundary representations of a hyperbolic locally compact group are weakly equivalent. We also show that nonamenable hyperbolic locally compact groups with a cocompact amenable subgroup are characterized by the property that any two proper length functions are homothetic up to an additive constant. Combining those results with the work of L. Garncarek on the irreducibility of boundary representations of discrete hyperbolic groups, we deduce that a type I hyperbolic group with a cocompact lattice contains a cocompact amenable subgroup. Specializing to groups acting on trees, we answer a question of C. Houdayer and S. Raum.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.