Concept

Hyperbolic 3-manifold

Résumé
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory. Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds). After the proof of the Geometrisation conjecture, understanding the topological properties of hyperbolic 3-manifolds is thus a major goal of 3-dimensional topology. Recent breakthroughs of Kahn–Markovic, Wise, Agol and others have answered most long-standing open questions on the topic but there are still many less prominent ones which have not been solved. In dimension 2 almost all closed surfaces are hyperbolic (all but the sphere, projective plane, torus and Klein bottle). In dimension 3 this is far from true: there are many ways to construct infinitely many non-hyperbolic closed manifolds. On the other hand, the heuristic statement that "a generic 3-manifold tends to be hyperbolic" is verified in many contexts. For example, any knot which is not either a satellite knot or a torus knot is hyperbolic. Moreover, almost all Dehn surgeries on a hyperbolic knot yield a hyperbolic manifold. A similar result is true of links (Thurston's hyperbolic Dehn surgery theorem), and since all 3-manifolds are obtained as surgeries on a link in the 3-sphere this gives a more precise sense to the informal statement.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.