Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
RentabilitéLa rentabilité est le rapport entre un revenu obtenu ou prévu et les ressources employées pour l'obtenir. La notion s'applique notamment aux entreprises, mais aussi à tout autre investissement. La rentabilité rétrospective est le rapport entre un résultat comptable et les moyens en passifs mis en œuvre pour l'obtenir. La rentabilité prévisionnelle est le rapport entre un gain de trésorerie projeté et la valeur d'un investissement nécessaire pour générer ce gain.
Événement climatique extrêmeUn événement climatique extrême ou événement météorologique extrême est un phénomène météorologique caractérisé par sa rareté, son intensité ou les dégâts qu'il provoque, selon la définition retenue. Les canicules, vagues de froid, cyclones tropicaux, sécheresses en sont des exemples. La fréquence et l'intensité de certains événements climatiques extrêmes augmentent en conséquence du réchauffement climatique d'origine anthropique.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Biais de sélectionDans une étude statistique, le terme biais de sélection désigne une erreur systématique faite lors de la sélection des sujets à étudier. Ce terme regroupe tous les biais pouvant conduire à ce que les sujets effectivement observés lors d'une enquête ne constituent pas un groupe représentatif des populations censées être étudiées et ne permettent donc pas de répondre aux questions posées dans le protocole. Les biais de sélection se produisent lors de l'échantillonnage, c'est-à-dire lors de la sélection d'un échantillon représentatif de la population étudiée.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Systemic biasSystemic bias is the inherent tendency of a process to support particular outcomes. The term generally refers to human systems such as institutions. Systemic bias is related to and overlaps conceptually with institutional bias and structural bias, and the terms are often used interchangeably. According to Oxford Reference, institutional bias is "a tendency for the procedures and practices of particular institutions to operate in ways which result in certain social groups being advantaged or favoured and others being disadvantaged or devalued.
Biais médiatiqueUn biais médiatique est une tendance des médias à présenter involontairement les informations, idées ou évènements d'une façon altérée par un apriori ou une conviction. Le phénomène de biais médiatique est connu des attachés de presse, des états-majors du monde politique, et bien entendu des médias eux-mêmes. Il s'ensuit une course au positionnement. Une étude de 2014 analyse l’envergure et les différentes formes de biais médiatiques.