Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Théorème du point fixe de Kakutanivignette|Exemple animé montrant des points x, et leurs images φ(x) par la fonction φ. L'animation finit par montrer un point x contenu dans φ(x). En analyse mathématique, le théorème du point fixe de Kakutani est un théorème de point fixe qui généralise celui de Brouwer à des fonctions à valeurs ensemblistes. Il fournit une condition suffisante pour qu'une telle fonction, définie sur un compact convexe d'un espace euclidien, possède un point fixe, c'est-à-dire dans ce contexte : un point qui appartient à son par cette fonction.
Incertitude de mesurevignette|Mesurage avec une colonne de mesure. En métrologie, une incertitude de mesure liée à un mesurage (d'après le Bureau international des poids et mesures). Elle est considérée comme une dispersion et fait appel à des notions de statistique. Les causes de cette dispersion, liées à différents facteurs, influent sur le résultat de mesurage, donc sur l'incertitude et in fine sur la qualité de la mesure. Elle comprend de nombreuses composantes qui sont évaluées de deux façons différentes : certaines par une analyse statistique, d'autres par d'autres moyens.
Lowest common denominatorIn mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions. The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: but it is not always the lowest common denominator, as in: Here, 36 is the least common multiple of 12 and 18.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.