Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Amas stellaireUn amas stellaire est une concentration locale d'étoiles d'origine commune et liées entre elles par la gravitation, dans un espace dont les dimensions peuvent atteindre 200 pc. Ces objets sont classés en plusieurs familles selon leur aspect ; ce sont, par compacité croissante : les associations stellaires, les amas ouverts et les amas globulaires. Les amas stellaires se maintiennent par l'attraction gravitationnelle mutuelle de leurs membres.
Clustering high-dimensional dataClustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions. Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions equals the size of the vocabulary.
Classification doubleLa Classification double ou est une technique d'exploration de données non-supervisée permettant de segmenter simultanément les lignes et les colonnes d'une matrice. Plus formellement, la définition de la classification double peut s'exprimer de la manière suivante (pour le type de classification par colonne) : soit une matrice , soient , alors est appelé de lorsque pour tout Le a été utilisé massivement en biologie - par exemple dans l'analyse de l'expression génétique par Yizong Cheng et George M.
Grappe de serveursOn parle de grappe de serveurs, de cluster, de groupement de serveurs ou de ferme de calcul (computer cluster en anglais) pour désigner des techniques consistant à regrouper plusieurs ordinateurs indépendants appelés nœuds (node en anglais), afin de permettre une gestion globale et de dépasser les limitations d'un ordinateur pour : augmenter la disponibilité ; faciliter la montée en charge ; permettre une répartition de la charge ; faciliter la gestion des ressources (processeur, mémoire vive, disques durs,
Critiques des théories de l'évolutionEn tant que théorie scientifique, la théorie darwinienne de l'évolution des espèces par sélection naturelle fait l'objet de diverses critiques. L'idée d'évolution biologique est souvent rejetée car elle s'oppose à une vision spirituelle de l'homme, en le présentant comme le simple résultat du hasard, obéissant uniquement à des lois mécaniques et matérielles, et non le résultat d'un dessein où l'homme pourrait trouver du sens, en particulier par des croyants qui refusent l'idée d'évolution par fidélité à certains textes sacrés comme la Torah, la Bible ou le Coran.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Computational phylogeneticsComputational phylogenetics is the application of computational algorithms, methods, and programs to phylogenetic analyses. The goal is to assemble a phylogenetic tree representing a hypothesis about the evolutionary ancestry of a set of genes, species, or other taxa. For example, these techniques have been used to explore the family tree of hominid species and the relationships between specific genes shared by many types of organisms.