Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Rétropropagation du gradientEn intelligence artificielle, plus précisément en apprentissage automatique, la rétropropagation du gradient est une méthode pour entraîner un réseau de neurones. Elle consiste à mettre à jour les poids de chaque neurone de la dernière couche vers la première. Elle vise à corriger les erreurs selon l'importance de la contribution de chaque élément à celles-ci. Dans le cas des réseaux de neurones, les poids synaptiques qui contribuent plus à une erreur seront modifiés de manière plus importante que les poids qui provoquent une erreur marginale.
ComputingComputing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Propagation des ondes radioLes ondes radioélectriques ou ondes hertziennes sont des ondes électromagnétiques qui se propagent de deux façons : dans l'espace libre (propagation rayonnée, autour de la Terre par exemple) dans des lignes (propagation guidée, dans un câble coaxial ou un guide d'ondes) Le domaine des fréquences des ondes radio s'étend de à . Pour la partie théorique, on se reportera à l'article Établissement de l'équation de propagation à partir des équations de Maxwell .
Langage de description de matérielUn langage de description de matériel, ou du matériel (ou HDL pour hardware description language en anglais) est un langage informatique permettant la description d'un circuit électronique au niveau des transferts de registres (RTL). Celui-ci peut décrire les fonctions réalisées par le circuit (description comportementale) ou les portes logiques utilisées par le circuit (description structurelle). Il est possible d'observer le fonctionnement d'un circuit électronique modélisé dans un langage de description grâce à la simulation.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Réseau informatiquethumb|upright|Connecteurs RJ-45 servant à la connexion des réseaux informatiques via Ethernet. thumb|upright Un réseau informatique ( ou DCN) est un ensemble d'équipements reliés entre eux pour échanger des informations. Par analogie avec un (un réseau est un « petit rets », c'est-à-dire un petit filet), on appelle nœud l'extrémité d'une connexion, qui peut être une intersection de plusieurs connexions ou équipements (un ordinateur, un routeur, un concentrateur, un commutateur).