Publication

GeSn as next-generation material for short-wave infrared single-photon detection

Andrea Giunto
2023
Thèse EPFL
Résumé

In recent years, the automotive industry has aspired to bring self-driving vehicles to the generalpublic and light detection and ranging (LiDAR) sensors have emerged as the preferred solution forcar vision systems. At present, LiDAR technologies employ expensive Indium-based III-V materialsfor optimal performance. However, in view of future mass production of the technology, thisapproach is not sustainable due to the reliance on In, a scarce element already extensively used inthe semiconductor industry.In this context, this thesis explores the potential of GeSn as absorber material for single-photondetection in the short-wave infrared wavelengths to replace the current commercial III-V technologyemployed in LiDARs. Ge and Sn are more abundant elements compared to In, making thema more sustainable option for single-photon avalanche photodiodes (SPADs). Furthermore, thepossibility of monolithic integration of GeSn thin films on Si platforms allows for the utilization oflower amounts of these elements in contrast with III-V SPADs, where In constitutes the bulk ofthe device. Nevertheless, the use of the GeSn semiconductor comes with fundamental materialscience challenges related to the material metastability and electrically active defects arising fromthe thin film growth process on Si substrates.In this thesis, we propose to integrate a GeSn absorber on a Ge-buffered Si diode to achieve single photondetection targeting the wavelength of 1.55 &m. We aimed to demonstrate an all-group-IVSPAD device by epitaxially growing the Ge/GeSn absorber stack employing magnetron sputteringas the deposition method preferred for high-volume semiconductor production.The thesis starts with a review of the physics of SPAD devices, justifying the need of GeSn asabsorber material to access the wavelength of 1.55 &m in all-group-IV devices. Subsequently, Ipresent a detailed assessment of the understanding of the optoelectronic properties of Ge andGeSn thin films in the literature, reviewing additionally the works on sputtered epitaxial Ge andGeSn films. I then discuss the results of our scientific research in four chapters, each focused on adifferent layer composing the SPAD device.We first investigate the in situ p-type doping of GeSn by In, and show that In acts as a surfactantduring the epitaxial growth of GeSn, inducing phase separation via the formation of Sn-In liquiddroplets.Next, we move to the bulk of the research of the thesis, which involved extensive characterizationof epitaxial Ge and GeSn films grown by the magnetron sputtering method. We demonstratesuccessful epitaxy of both materials, evidencing the critical influence of the substrate latticemismatch in inducing defects in the film. We additionally provide characterization of the electricalproperties of GeSn, which showed to be promising but affected by high impurity levels in the films due to contamination in the employed sputtering tools.In the third section, we demonstrate the viability of flash-lamp annealing of Ge buffers as CMOS-compatibleannealing process, shedding light on the influence of Si-Ge intermixing in determinethe final defect density.Lastly, we present the design of a GeSn-on-Si SPAD structure and present results on their optoelectroniccharacteristics with sputtered GeSn, correlating them with the material's electricalproperties.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (39)
Dopage (semi-conducteur)
Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.
Avalanche photodiode
An avalanche photodiode (APD) is a highly sensitive semiconductor photodiode detector that exploits the photoelectric effect to convert light into electricity. From a functional standpoint, they can be regarded as the semiconductor analog of photomultiplier tubes. The avalanche photodiode (APD) was invented by Japanese engineer Jun-ichi Nishizawa in 1952. However, study of avalanche breakdown, microplasma defects in silicon and germanium and the investigation of optical detection using p-n junctions predate this patent.
Épitaxie
L'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
Afficher plus
Publications associées (46)

Advanced Silicon and SWIR Single-Photon Avalanche Diodes: Design, Simulation, and Characterization

Ekin Kizilkan

Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...
EPFL2024

Silicon CMOS and InGaAs(P)/InP SPADs for NIR/SWIR detection

Utku Karaca

Applications demanding imaging at low-light conditions at near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, such as quantum information science, biophotonics, space imaging, and light detection and ranging (LiDAR), have accelerated the develo ...
EPFL2024

Semiconductor-based device architectures in multimaterial fibers

William Nicolas Duncan Esposito

Semiconductor materials have given rise to today's digital technology and consumer electronics. Widespread adoption is closely linked to the ability to process and integrate them in devices at scale. Where flexibility and large surfaces are required, such ...
EPFL2023
Afficher plus
MOOCs associés (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.