Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Clause de HornEn logique, en particulier en calcul propositionnel, une clause de Horn est une clause comportant au plus un littéral positif. Il existe donc trois types de clauses de Horn : celles qui comportent un littéral positif et au moins un littéral négatif, appelées clauses de Horn strictes ; celles qui comportent un littéral positif et aucun littéral négatif, appelées clauses de Horn positives ; celles qui ne comportent que des littéraux négatifs, appelées clauses de Horn négatives.
Complétude (logique)En logique mathématique et métalogique, un système formel est dit complet par rapport à une propriété particulière si chaque formule possédant cette propriété peut être prouvée par une démonstration formelle à l'aide de ce système, c'est-à-dire par l'un de ses théorèmes ; autrement, le système est dit incomplet. Le terme « complet » est également utilisé sans qualification, avec des significations différentes selon le contexte, la plupart du temps se référant à la propriété de la validité sémantique.
Déduction logiqueLa déduction logique est un type de relation que l'on rencontre en logique mathématique. Elle relie des propositions dites prémisses à une proposition dite conclusion et préserve la vérité. Prémisses et conclusion qui sont ainsi reliées par une règle de déduction, assurent que si la règle est valide et si les prémisses sont vraies, la conclusion est elle aussi vraie. On dit alors que la conclusion est une conséquence des prémisses, ou parfois que la conclusion vient des prémisses.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Inquisitive semanticsInquisitive semantics is a framework in logic and natural language semantics. In inquisitive semantics, the semantic content of a sentence captures both the information that the sentence conveys and the issue that it raises. The framework provides a foundation for the linguistic analysis of statements and questions. It was originally developed by Ivano Ciardelli, Jeroen Groenendijk, Salvador Mascarenhas, and Floris Roelofsen. The essential notion in inquisitive semantics is that of an inquisitive proposition.
Théorème de complétude de GödelEn logique mathématique, le théorème de complétude du calcul des prédicats du premier ordre dresse une correspondance entre la sémantique et les démonstrations d'un système de déduction en logique du premier ordre. En termes intuitifs le théorème de complétude construit un pont entre vérité et démontrabilité formelle : tout énoncé vrai est démontrable.
Système à la HilbertEn logique, les systèmes à la Hilbert servent à définir les déductions formelles en suivant un modèle proposé par David Hilbert au début du : un grand nombre daxiomes logiques exprimant les principales propriétés de la logique que l'on combine au moyen de quelques règles, notamment la règle de modus ponens, pour dériver de nouveaux théorèmes. Les systèmes à la Hilbert héritent du système défini par Gottlob Frege et constituent les premiers systèmes déductifs, avant l'apparition de la déduction naturelle ou du calcul des séquents, appelés parfois par opposition systèmes à la Gentzen.