Méthode des plans sécantsvignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.
Heuristique (mathématiques)Au sens le plus large, l'heuristique est la psychologie de la découverte, abordée par différents mathématiciens. En algorithmique, une heuristique est une méthode de calcul qui fournit rapidement une solution réalisable, pas nécessairement optimale ou exacte, pour un problème d'optimisation difficile. On distingue en général plusieurs temps la prise en compte du problème (question, contexte : données, contraintes, acteurs, tenants et aboutissants) l'incubation, recherche de solution, rumination parfois très longue ; la méthode du problème résolu peut ici dégager les conditions nécessaires à respecter.
HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Expérience clientvignette|redresse=1.5|Grâce aux apports du marketing expérientiel, les entreprises qui cherchent à se différencier intègrent le processus de déballage (ici un ordinateur portable MacBook Pro) comme faisant partie intégrante de l'expérience client. L'expérience client est un concept du domaine du marketing qui traite du sujet de la relation entre les entreprises et les clients. Elle inclut une combinaison d'éléments cognitifs, émotionnels, physiques, sensoriels, spirituels et sociaux que l'entreprise doit prendre en compte pour satisfaire ses clients.
Bricks and clicksLes expressions bricks and clicks, ou encore click and mortar font référence à des entreprises qui proposent des processus complémentaires de vente qui combinent de la distribution classique de vente en magasin ou en point de vente physique (hors-ligne) et de la vente par Internet (en ligne). Cette notion est aussi nommée par les expressions suivantes : retrait en magasin, click & collect, check & reserve, click & pick up, reserve & collect, réservation en ligne, etc. La Fnac et la SNCF sont des exemples connus de bricks and clicks.
Champ aléatoire de MarkovUn champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.