En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau. En fixant un point origine, on peut lui associer un réseau de points de Rn (plusieurs réseaux pouvant définir le même réseau de points). Ce réseau de points remplit l'espace au sens où il existe un rayon R tel que toute boule de rayon R contient au moins un point du réseau. Il est discret au sens où il existe un nombre strictement positif r tel que toute boule de rayon r contient au plus un point du réseau. Il est régulier. L'étude des réseaux est à la croisée de différentes branches des mathématiques, la théorie des groupes, l’algèbre linéaire, la théorie des groupes de Lie la géométrie des nombres, la géométrie convexe, mais aussi d’autres domaines comme l’algorithmique ou la cristallographie (réseau de Bravais) et les outils d'analyse sont essentiellement géométriques. Les questions propres à l'analyse d'un réseau portent sur les différentes symétries qui laissent invariant le réseau, la résolution de problèmes d'empilements de sphères ou de convexes. Algèbre linéaire Dans cet article les lettres C, R, Q et Z désignent respectivement le corps des imaginaires encore appelés complexes, des nombres réels, des rationnels et l'anneau des nombres entiers et n un entier strictement positif. L'espace vectoriel Rn désigne l'ensemble des n-uplets composés de n nombres réels dans un ordre donné. Géométriquement, on les imagine comme les coordonnées d'un point dans un espace muni d'un repère orthonormal. En dimension 2 ou 3, on obtient une représentation du monde physique, à la condition qu'il soit approximé par une géométrie euclidienne.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
CH-632: Principles and Applications of X-ray Diffraction
Basic theoretical aspects of Crystallography and the interaction between X-ray radiation and matter. Experimental aspects of materials-oriented powder and single crystal diffraction. Familiarization w
MATH-487: Topics in stochastic analysis
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
MATH-486: Statistical mechanics and Gibbs measures
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
Afficher plus
Publications associées (163)
Concepts associés (28)
Diagramme de Voronoï
En mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Unit cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.