Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Crible algébriqueEn théorie des nombres, l'algorithme du crible du corps de nombres généralisé (GNFS) obtient la décomposition d'un entier en produit de facteurs premiers. C'est à l'heure actuelle (2018) l'algorithme le plus efficace connu pour obtenir cette décomposition, lorsque le nombre considéré est assez grand, c'est-à-dire au-delà d'environ 10100, et ne possède pas de structure remarquable. Cette efficacité est due pour partie à l'utilisation d'une méthode de crible et pour partie à l'utilisation d'algorithmes efficaces pour certaines opérations (comme la manipulation de matrices creuses).
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Corps totalement réelEn mathématiques et en théorie des nombres, un corps de nombres K est dit totalement réel si pour chaque plongement de K dans l'ensemble des nombres complexes, l' se trouve dans l'ensemble des nombres réels. De manière équivalente, K est engendré sur Q par une racine d'un polynôme à coefficients entiers dont toutes les racines sont réelles, ou bien encore le produit tensoriel K⊗R est un produit d'exemplaires de R. La notion de signature d'un corps de nombres permet de mesurer plus précisément à quel point un corps est loin d'être totalement réel.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Torsion (algèbre)En algèbre, dans un groupe, un élément est dit de torsion s'il est d'ordre fini, c'est-à-dire si l'une de ses puissances non nulle est l'élément neutre. La torsion d'un groupe est l'ensemble de ses éléments de torsion. Un groupe est dit sans torsion si sa torsion ne contient que le neutre, c'est-à-dire si tout élément différent du neutre est d'ordre infini. Si le groupe est abélien, sa torsion est un sous-groupe. Par exemple, le sous-groupe de torsion du groupe abélien est .
Torsion-free moduleIn algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is torsion free if its torsion submodule is reduced to its zero element. In integral domains the regular elements of the ring are its nonzero elements, so in this case a torsion-free module is one such that zero is the only element annihilated by some non-zero element of the ring.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.