Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Our objective is to show a possibly interesting structure of homotopic nature appearing in persistent (co)homology. Assuming that the filtration of a simplicial set embedded in induces a multiplicative filtration on the dg algebra of simplicial cochains, we use a result by Kadeishvili to get a unique -algebra structure on the complete persistent cohomology of the filtered simplicial set. We then construct of a (pseudo)metric on the set of all barcodes of all cohomological degrees enriched with the -algebra structure stated before, refining the usual bottleneck metric, and which is also independent of the particular -algebra structure chosen. We also compute this distance for some basic examples. As an aside, we give a simple proof of a result relating the barcode structure between persistent homology and cohomology, that was observed by de Silva, Morozov, and Vejdemo-Johansson under some restricted assumptions which we do not suppose.
Kathryn Hess Bellwald, Inbar Klang