**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Persistent homology

Résumé

:See homology for an introduction to the notation.
Persistent homology is a method for computing topological features of a space at different spatial resolutions. More persistent features are detected over a wide range of spatial scales and are deemed more likely to represent true features of the underlying space rather than artifacts of sampling, noise, or particular choice of parameters.
To find the persistent homology of a space, the space must first be represented as a simplicial complex. A distance function on the underlying space corresponds to a filtration of the simplicial complex, that is a nested sequence of increasing subsets. One common method of doing this is via taking the sublevel filtration of the distance to a point cloud, or equivalently, the offset filtration on the point cloud and taking its nerve in order to get the simplicial filtration known as Čech filtration. A similar construction uses a nested sequence of Vietoris-Rips complexes known as the Vietoris-Rips

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées (12)

Chargement

Chargement

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Personnes associées (1)

Concepts associés (1)

Unités associées (1)

Topological data analysis

In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, i

Cours associés (2)

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its properties and learn how to compute it. There will be many examples and applications.

This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings.

2018

Using persistent homology to reveal hidden covariates in systems governed by the kinetic Ising model

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involves gluing the branches back together. We are able to define combinatorial equivalence classes of merge trees and barcodes that allow us to completely solve this inverse problem. A barcode can be associated with an element in the symmetric group, and the number of trees with the same barcode, the tree realization number, depends only on the permutation type. We compare these combinatorial definitions of barcodes and trees to those of phylogenetic trees, thus describing the subtle differences between these spaces. The result is a clear combinatorial distinction between the phylogenetic tree space and the merge tree space.The representation of a barcode by a permutation not only gives a formula for the tree realization number, but also opens the door to deeper connections between inverse problems in topological data analysis, group theory, and combinatorics.Based on the combinatorial classes of barcodes, we construct a stratification of the barcode space. We define coordinates that partition the space of barcodes into regions indexed by the averages and the standard deviations of birth and death times and by the permutation type of a barcode. By associating to a barcode the coordinates of its region, we define a new invariant of barcodes.These equivalence classes define a stratification of the space of barcodes with n bars where the strata are indexed by the symmetric group on n letters and its parabolic subgroups.We study the realization numbers computed from barcodes with uniform permutation type (i.e., drawn from the uniform distribution on the symmetric group) and establish a fundamental null hypothesis for this invariant. We show that the tree realization number can be used as a statistic to distinguish distributions of trees by comparing neuronal trees to random barcode distributions.

Digital images enable quantitative analysis of material properties at micro and macro length scales, but choosing an appropriate resolution when acquiring the image is challenging. A high resolution means longer image acquisition and larger data requirements for a given sample, but if the resolution is too low, significant information may be lost. This paper studies the impact of changes in resolution on persistent homology, a tool from topological data analysis that provides a signature of structure in an image across all length scales. Given prior information about a function, the geometry of an object, or its density distribution at a given resolution, we provide methods to select the coarsest resolution yielding results within an acceptable tolerance. We present numerical case studies for an illustrative synthetic example and samples from porous materials where the theoretical bounds are unknown.

Séances de cours associées (6)