Modèle génératifvignette|Schéma représentant la différence entre un modèle discriminatif et un modèle génératif. En classement automatique un modèle génératif est un modèle statistique défini par opposition à un modèle discriminatif. Étant donné une variable X à laquelle il doit associer une autre variable Y, le modèle génératif cherchera à décrire la probabilité conditionnelle ainsi que la probabilité puis d'utiliser la formule de Bayes pour calculer la probabilité .
Raisonnement à partir de casLe raisonnement à partir de cas (RàPC) (nommé en anglais case-based reasoning (CBR)) est un type de raisonnement qui copie le comportement humain qui consiste à faire naturellement appel à l'expérience pour résoudre les problèmes de la vie quotidienne, en se remémorant les situations semblables déjà rencontrées et en les comparant à la situation actuelle pour construire une nouvelle solution qui, à son tour, s’ajoutera à l'expérience. Ce type de raisonnement résout les problèmes en retrouvant des cas analogues dans sa base de connaissances et en les adaptant au cas considéré.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie:
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Récupération de donnéesvignette|Un laboratoire de récupération de données La récupération de données (ou restauration de données) est une opération informatique qui consiste à retrouver les données perdues à la suite d'une erreur humaine, une défaillance matérielle, une défaillance logicielle d'un programme ou d'un système d'exploitation, un accident ou au moment opportun d'un test de récupération de données défini dans une procédure de stratégie de sauvegarde et d'archive (également appelé plan de sauvegarde).