Syndrome d'irradiation aiguëLe syndrome d'irradiation aiguë ou syndrome aigu d'irradiation (SAI), également appelé fièvre des radiations ou encore, anciennement, maladie des rayons, désigne un ensemble de symptômes potentiellement mortels qui résultent d'une exposition ponctuelle des tissus biologiques d'une partie importante du corps à une forte dose de rayonnements ionisants (rayons X, rayonnements alpha, beta ou gamma, ou encore flux de neutrons).
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Traité de la lumière (Huygens)Dans son Traité de la lumière, écrit à Paris en 1678 mais publié douze ans plus tard lorsqu'il réside aux Pays-Bas, Christian Huygens expose ses conceptions sur la nature de la lumière qui permettent d'expliquer les lois de l'optique géométrique établies par René Descartes. À la différence d'Isaac Newton qui pensait que la lumière était composée de particules émises par la source lumineuse qui venaient frapper l'œil de l'observateur, Huygens conçoit la lumière comme formée d'ondes sphériques qui se propagent dans l'espace à la manière des ondes sonores.
Formules de l'arc moitiéEn trigonométrie, les formules de l'arc moitié sont des identités trigonométriques permettant d'exprimer les valeurs de fonctions trigonométriques d'un angle en fonction de la tangente de la moitié de cet angle. Les trois principales sont celles donnant les sinus, cosinus et tangente en fonction de la tangente de l'angle moitié : On trouve également : et ; et ; Les trois formules principales se déduisent des formules de l'angle double et de l'égalité cos + sin = 1.
Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).
Loi en carré inverseEn physique, une loi en carré inverse est une loi physique postulant qu'une quantité physique (énergie, force, ou autre) est inversement proportionnelle au carré de la distance de l'origine de cette quantité physique. Cette loi fut d'abord suggérée en 1645 par l'astronome français Ismaël Boulliau dans son livre Astronomica Philolaica, puis mise en forme par Isaac Newton en 1687 après que Robert Hooke lui eut proposé l'idée dans une lettre datée du .
Internal and external anglesIn geometry, an angle of a polygon is formed by two adjacent sides. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex.
Upper half-planeIn mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.