Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Base de données orientée grapheUne base de données orientée graphe est une base de données orientée objet utilisant la théorie des graphes, donc avec des nœuds et des arcs, permettant de représenter et stocker les données. Par définition, une base de données orientée graphe correspond à un système de stockage capable de fournir une adjacence entre éléments voisins : chaque voisin d'une entité est accessible grâce à un pointeur physique. C'est une base de données orientée objet adaptée à l'exploitation des structures de données de type graphe ou dérivée, comme des arbres.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Graphe médianEn théorie des graphes, un graphe médian est un type de graphe. Étant donné un triplet de nœuds dans un graphe, les médians de ces sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Un graphe médian est un graphe tel que pour tout triplet de nœuds il existe un unique médian. En théorie des graphes, les médians d'un triplet de sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Autrement dit, si est l'ensemble de sommets sur les plus courts chemins entre et , alors l'ensemble des sommets médians est .
Claw-free graphIn graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Intersection (géométrie)En géométrie, une intersection est un point, une ligne ou une courbe commune à deux objets ou plus (tels que des droites, des courbes, des plans et des surfaces). Le cas le plus simple en géométrie euclidienne est l'intersection entre deux droites distinctes, qui est soit un point, soit inexistante (si les lignes sont parallèles). Les autres types d'intersection géométrique comprennent : Courbe d'intersection La détermination de l'intersection d'hyperplans – des objets géométriques linéaires dans un espace de dimension supérieure – est une tâche simple d'algèbre linéaire, qui revient à déterminer la solution d'un système d'équations linéaires.
Graphe sans triangleEn théorie des graphes, un graphe sans triangle est un graphe qui ne possède pas de triplet d'arêtes formant un triangle. Le théorème de Mantel, cas particulier du théorème de Turán, est : La famille des graphes sans triangle, contient notamment les graphes acycliques et est contenue dans les graphes sans diamant. Les graphes sans triangle peuvent être reconnus en temps , où est le nombre d'arêtes. De façon plus générale, on peut reconnaître les graphes n'ayant pas de cycles d'une certaine longueur (fixé dans l'algorithme), en temps (avec le nombre de sommets) ou en temps .
Trapezoid graphIn graph theory, trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. They are a class of co-comparability graphs that contain interval graphs and permutation graphs as subclasses. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect. Trapezoid graphs were introduced by Dagan, Golumbic, and Pinter in 1988.