Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
Divergence (analyse vectorielle)vignette|Les lignes bleues représentant les gradients de couleur, du plus clair au plus foncé. L'opérateur divergence permet de calculer, localement, la variation de ce gradient de couleur vignette|Illustration de la divergence d'un champ vectoriel, ici champ de vitesse converge à gauche et diverge à droite. En géométrie, la divergence d'un champ de vecteurs est un opérateur différentiel mesurant le défaut de conservation du volume sous l'action du flot de ce champ.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Euclidean distanceIn mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Espace pseudo-euclidienEn mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.