Generalized complex structureIn the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.
Hermitian manifoldIn mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold.
Structure presque complexeEn géométrie différentielle, une structure presque complexe sur une variété différentielle réelle est la donnée d'une structure d'espace vectoriel complexe sur chaque espace tangent. Une structure presque complexe J sur une variété différentielle M est un champ d'endomorphismes J, c'est-à-dire une section globale du fibré vectoriel , vérifiant : Une variété différentielle munie d'une structure presque complexe est appelée une variété presque complexe.
Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
Structure spinorielleEn géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ».
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Protein function predictionProtein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.