Publication

Critical line of the triangular Ising antiferromagnet in a field from a C3-symmetric corner transfer matrix algorithm

Concepts associés (23)
Symétrie (transformation géométrique)
Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Modèle d'Ising
Le modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Symmetry in mathematics
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure. This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups.
Symétrie C
vignette|upright=1.3|Illusion de symétrie : le reflet de l'ombre de la lampe (sous l'effet du flash de l'appareil photo) semble être le reflet de celle-ci ! En physique des particules, la conjugaison de charge, ou transformation de charge, ou inversion de charge est possiblement observable en ce qui concerne l'électromagnétisme, la gravité, et l'interaction forte. En revanche, la « Symétrie C » (symétrie de charge) n'est pas observée « dans le tableau » de l'interaction faible. C(x)= -x. C(e+)= e-. C(e-)= e+.
Symétrie (physique)
En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Ordre de symétrie
thumb|Une sphère colorée permet d'illustrer les 48 domaines fondamentaux de la symétrie octaédrique. L'ordre de symétrie d'un objet est le nombre d'arrangements distincts pour lequel l'objet en question est globalement invariant. En d'autres termes, il s'agit de l'ordre de son groupe de symétrie. L'objet en question peut être une molécule, un réseau cristallin, un pavage et de manière plus générale, tout objet mathématique en N-dimensions. Théorie des groupes, une branche des mathématiques qui traite des pr
Treillis modulaire
Dans le cadre mathématique de la théorie des ordres, un treillis modulaire est un treillis qui vérifie la condition auto-duale suivante Loi de modularité : implique Les treillis modulaires apparaissent en algèbre et dans de nombreux autres domaines des mathématiques. Par exemple, les sous-espaces vectoriels d'un espace vectoriel, et plus généralement les sous-modules d'un module sur un anneau, forment un treillis modulaire. Les treillis modulaires sont parfois appelés treillis de Dedekind, d'après Richard Dedekind, qui a formulé la loi de modularité.
Point critique (thermodynamique)
vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Integer lattice
In mathematics, the n-dimensional integer lattice (or cubic lattice), denoted \mathbb{Z}^n, is the lattice in the Euclidean space \mathbb{R}^n whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. \mathbb{Z}^n is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice. The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2n n!.
Quantum spin liquid
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order. The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact antiferromagnetically with their nearest neighbors, i.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.