Dans le cadre mathématique de la théorie des ordres, un treillis modulaire est un treillis qui vérifie la condition auto-duale suivante
Loi de modularité :
implique
Les treillis modulaires apparaissent en algèbre et dans de nombreux autres domaines des mathématiques. Par exemple, les sous-espaces vectoriels d'un espace vectoriel, et plus généralement les sous-modules d'un module sur un anneau, forment un treillis modulaire.
Les treillis modulaires sont parfois appelés treillis de Dedekind, d'après Richard Dedekind, qui a formulé la loi de modularité.
Dans un treillis non modulaire, il peut exister des éléments qui vérifient la loi de modularité pour des éléments quelconques et , pourvu que . Un tel élément est appelé un élément modulaire. Plus généralement, on peut considérer des couples d'éléments qui vérifient la loi de modularité pour tous les éléments . Un tel couple est appelée un couple modulaire, et il existe plusieurs généralisations de la notion de modularité liées à la notion de semi-modularité qui s'appuient sur ce concept.
La loi de modularité peut être vue comme une loi associative restreinte entre les deux opérations d'un treillis, analogue à la loi associative , pour les espaces vectoriels, entre la multiplication dans le corps de base et la multiplication scalaire dans l'espace. La restriction est nécessaire car elle résulte de l'équation
On vérifie facilement que implique dans tout treillis. Par conséquent, la loi de modularité peut également être formulée comme suit :
Loi de modularité (variante)
implique .
Si on remplace par , la loi de modularité peut être formulée comme suit par une équation sans implication :
Loi de modularité (autre variante)
Cela montre (en utilisation la terminologie d'algèbre universelle) que les treillis modulaires forment une sous-variété de la variété des treillis. Par conséquent, toutes les images homomorphes, tous les sous-treillis et produits directs de treillis modulaires sont à nouveau modulaires.
vignette|Diagramme de Hasse de , le plus petit treillis non modulaire.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G, then their product is the subset of G defined by The subsets S and T need not be subgroups for this product to be well defined. The associativity of this product follows from that of the group product. The product of group subsets therefore defines a natural monoid structure on the power set of G. A lot more can be said in the case where S and T are subgroups.
thumb|Diagramme de Hasse du treillis des sous-groupes du groupe diédral D. En mathématique, le treillis des sous-groupes d'un groupe G est le treillis constitué des sous-groupes de G, muni de l'inclusion comme relation d'ordre partielle. La borne supérieure de deux sous-groupes a et b est le sous-groupe engendré par l'union de a et b et leur borne inférieure est leur intersection. Le groupe diédral D des huit isométries du carré contient dix sous-groupes, y compris D lui-même et son sous-groupe trivial.
In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval [c, d], viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
EPFL2024
, , ,
The corner transfer matrix renormalization group (CTMRG) algorithm has been extensively used to investigate both classical and quantum two-dimensional (2D) lattice models. The convergence of the algorithm can strongly vary from model to model depending on ...
College Pk2023
, ,
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...