Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Value at riskLa VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
RisqueLe risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
Risque financierUn risque financier est un risque de perdre de l'argent à la suite d'une opération financière (sur un actif financier) ou à une opération économique ayant une incidence financière (par exemple une vente à crédit ou en devises étrangères). Le risque de marché est le risque de perte qui peut résulter des fluctuations des prix des instruments financiers qui composent un portefeuille. Le risque de contrepartie est le risque que la partie avec laquelle un contrat a été conclu ne tienne pas ses engagements (livraison, paiement, remboursement, etc.