Comète de la ceinture principalethumb|L'astéroïde (596) Scheila qui dévoile son apparence cométaire le 12 décembre 2010. Une comète de la ceinture principale est un astéroïde de la ceinture principale ayant montré une activité cométaire sur une partie de son orbite. Le Jet Propulsion Laboratory définit ces objets comme un astéroïde dont le demi-grand axe est compris entre 2 au et 3,2 au, et dont le périhélie est supérieur à 1,6 au.
Orbite elliptiqueEn mécanique céleste et en mécanique spatiale, une orbite elliptique est une orbite dont l'excentricité est inférieure à 1 et non nulle. L'astronome andalou et musulman Al-Zarqali du suggère et affirme déjà que les orbites planétaires sont des ellipses. L'ellipticité des orbites héliocentriques de la Terre et des autres planètes du Système solaire a été découverte par l'astronome allemand et protestant Johannes Kepler (1571-1630), à partir des observations de l'orbite de la planète Mars.
Mouvement képlérienEn astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Orbital state vectorsIn astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position () and velocity () that together with their time (epoch) () uniquely determine the trajectory of the orbiting body in space. State vectors are defined with respect to some frame of reference, usually but not always an inertial reference frame.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
Objet transneptunienthumb|upright=1.5|Place des objets transneptuniens dans la classification des objets du système solaire. Un objet transneptunien (OTN ; en anglais transneptunian object, TNO) est une planète mineure du Système solaire dont l'orbite est, entièrement ou pour la majeure partie, au-delà de celle de la planète Neptune. La ceinture de Kuiper et le nuage d'Oort (nuage hypothétique) sont les noms de quelques subdivisions de ce volume de l'espace.
Excentricité orbitaleL’excentricité orbitale définit, en mécanique céleste et en mécanique spatiale, la forme des orbites des objets célestes. L'excentricité est couramment notée . Elle exprime l'écart de forme entre l'orbite et le cercle parfait dont l'excentricité est nulle. Lorsque , la trajectoire est fermée : l'orbite est périodique. Dans ce cas : lorsque , l'objet décrit un cercle et son orbite est dite circulaire ; lorsque , l'objet décrit une ellipse et son orbite est dite elliptique. Lorsque , la trajectoire est ouverte.
Mouvement coorbitalvignette|Définitions d'orbites ; Une convention possible Les six diagrammes ci-dessus montrent le fr:Soleil au centre (le point orange) En mécanique céleste, le mouvement coorbital ou co-orbital (en anglais : co-orbital motion) est le mouvement de révolution de deux objets célestes, ou plus, autour d'un même corps central sur des orbites différentes mais en résonance 1:1. L'action de coorbiter est appelée le coorbitage. Chaque objet animé d'un mouvement coorbital est dit coorbitant. est dit coorbiteur.