Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A central question in multi-agent strategic games deals with learning the underlying utilities driving the agents' behaviour. Motivated by the increasing availability of large data-sets, we develop an unifying data-driven technique to estimate agents' utility functions from their observed behaviour, irrespective of whether the observations correspond to equilibrium configurations or to temporal sequences of action profiles. Under standard assumptions on the parametrization of the utilities, the proposed inference method is computationally efficient and finds all the parameters that rationalize the observed behaviour best. We numerically validate our theoretical findings on market share estimation problem under advertising competition, using historical data from the Coca-Cola Company and Pepsi Inc. duopoly.|Copyright (c) 2023 The Authors.
Brice Tanguy Alphonse Lecampion, Andreas Möri
Thanh Trung Huynh, Quoc Viet Hung Nguyen, Thành Tâm Nguyên, Trung-Dung Hoang
Brice Tanguy Alphonse Lecampion, Andreas Möri