Énergie thermiqueL'énergie thermique est l'énergie cinétique d'agitation microscopique d'un objet, qui est due à une agitation désordonnée de ses molécules et de ses atomes. L'énergie thermique est une partie de l'énergie interne d'un corps. Les transferts d'énergie thermique entre corps sont appelés transferts thermiques et jouent un rôle essentiel en thermodynamique. Ils atteignent un équilibre lorsque la température des corps est égale. Transfert thermique L'énergie thermique a tendance à se diffuser uniformément dans l'espace.
Thermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
Équation de LangevinLéquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
Théorème du gradientLe théorème du gradient est un théorème de l'analyse vectorielle qui met en relation l'intégrale de volume du gradient d'un champ scalaire et l'intégrale de surface du même champ. Le théorème est le suivant : Pour démontrer que ces deux vecteurs sont égaux, il suffit de vérifier que leurs produits scalaires par n'importe quel vecteur le sont, en utilisant le théorème de flux-divergence.
Équation d'Euler-LagrangeL’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. E désignera un espace vectoriel normé, [t , t] un intervalle réel, et l'espace affine des fonctions x : [t , t] → E de classe C telles que , où x , x sont deux vecteurs fixés de E.
Exact differentialIn multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in multivariable calculus). An exact differential is sometimes also called a total differential, or a full differential, or, in the study of differential geometry, it is termed an exact form.
Houlevignette|Mer croisée, peu agitée. Petite houle. La houle est un mouvement ondulatoire de la surface de la mer qui est formé par un champ de vent éloigné de la zone d'observation (vent lointain). Il présente un aspect relativement régulier bien qu'il ne corresponde pas à la définition de la vague régulière périodique. Il ressemble plutôt à une telle onde dont l'amplitude varie lentement. Plus précisément, c'est la partie de l'état de la mer qui se caractérise par son absence de relation avec le vent local.