Mean absolute errorIn statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size: It is thus an arithmetic average of the absolute errors , where is the prediction and the true value.
DigitaleLes digitales forment le genre Digitalis, environ vingt espèces de plantes herbacées classiquement placées dans la famille des Scrofulariacées. Les études récentes situent désormais ce genre dans les Plantaginacées. Les digitales sont originaires d'Europe, d'Afrique du nord-ouest et d'Asie occidentale et centrale. Ces plantes peuvent être très toxiques. L'absorption d'environ une dizaine de feuilles provoque des troubles graves sur un sujet humain de corpulence moyenne.
Économie du savoirL'économie du savoir, l'économie de la connaissance, l'économie de l'immatériel ou encore le capitalisme cognitif, est, selon certains économistes, une nouvelle phase de l'histoire économique qui aurait commencé dans les années 1990. Le concept est établi par Fritz Machlup en 1962 par la publication de son livre The production and distribution of knowledge in the United States ; sa thèse de 1977 montre que près de 45 % des employés aux États-Unis manipulent de l'information.
Boltzmann machineA Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising–Lenz–Little model) is a stochastic spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, that is a stochastic Ising model. It is a statistical physics technique applied in the context of cognitive science. It is also classified as a Markov random field. Boltzmann machines are theoretically intriguing because of the locality and Hebbian nature of their training algorithm (being trained by Hebb's rule), and because of their parallelism and the resemblance of their dynamics to simple physical processes.
Least absolute deviationsLeast absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values.
Compression artifactA compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Transfert de connaissancesvignette|Logo illustratif de The Noun Project. Le transfert de connaissances ou compétences, dans les domaines du développement et de l’apprentissage de l'organisation, est le problème pratique de la transmission de données d’une partie de l’organisation à une autre (ou aux autres) partie(s). Le transfert de connaissances ne recouvre qu'une partie de la problématique du transfert de compétences pour les structures.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.