Surface minimaleEn mathématiques et en physique, une surface minimale est une surface minimisant son aire tout en réalisant une contrainte : un ensemble de points, ou le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la mécanique des fluides, le traitement mathématique utilise le langage des surfaces minimales.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
One-dimensional spaceIn physics and mathematics, a sequence of n numbers can specify a location in n-dimensional space. When n = 1, the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the position of each point on it can be described by a single number. In algebraic geometry there are several structures that are technically one-dimensional spaces but referred to in other terms. A field k is a one-dimensional vector space over itself.
Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Solution (chimie)Une solution, en chimie, est un mélange homogène (constitué d'une seule phase) résultant de la dissolution d'un ou plusieurs soluté(s) (espèce chimique dissoute) dans un solvant. Les molécules (ou les ions) de soluté sont alors solvatées et dispersées dans le solvant. La solution liquide est l'exemple le plus connu. Une solution ayant l'eau comme solvant est appelée solution aqueuse. Il est possible de mettre en solution : un liquide dans un autre : limité par la miscibilité des deux liquides ; un solide dans un liquide : limité par la solubilité du solide dans le solvant, au-delà de laquelle le solide n'est plus dissous.
Schwarz minimal surfaceIn differential geometry, the Schwarz minimal surfaces are periodic minimal surfaces originally described by Hermann Schwarz. In the 1880s Schwarz and his student E. R. Neovius described periodic minimal surfaces. They were later named by Alan Schoen in his seminal report that described the gyroid and other triply periodic minimal surfaces. The surfaces were generated using symmetry arguments: given a solution to Plateau's problem for a polygon, reflections of the surface across the boundary lines also produce valid minimal surfaces that can be continuously joined to the original solution.
Surface d'EnneperUne surface d'Enneper est une surface minimale, paramétrisée en 1863 par le mathématicien allemand Alfred Enneper. On peut la décrire par un paramétrage cartésien : Cette surface représente un film de savon « fantôme », c’est-à-dire un équilibre instable de l’énergie potentielle. On peut imaginer une surface d'Enneper comme s'appuyant sur un contour comme celui tracé sur une balle de tennis. Sur ce contour, deux films de savon réels peuvent s'accrocher : un pour chaque moitié de la surface de la balle de tennis.
Surfaces de ScherkIn mathematics, a Scherk surface (named after Heinrich Scherk) is an example of a minimal surface. Scherk described two complete embedded minimal surfaces in 1834; his first surface is a doubly periodic surface, his second surface is singly periodic. They were the third non-trivial examples of minimal surfaces (the first two were the catenoid and helicoid). The two surfaces are conjugates of each other. Scherk surfaces arise in the study of certain limiting minimal surface problems and in the study of harmonic diffeomorphisms of hyperbolic space.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.