Financial economicsFinancial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e.
Analyse par les options réellesL'analyse par les options réelles (AOR) est un outil financier d'aide à la décision en matière d'investissement, directement inspiré des techniques d’options financières (« call » ou « put »). L’option réelle permet de prendre une décision stratégique d'investissement relative à un actif sous-jacent non financier. Ce sous-jacent peut être un projet ou un actif réel du type : bien d'équipement, usine de production, projet R&D, activité en phase de démarrage ou de croissance, ou bien encore propriété intellectuelle.
Knowledge sharingKnowledge sharing is an activity through which knowledge (namely, information, skills, or expertise) is exchanged among people, friends, peers, families, communities (for example, Wikipedia), or within or between organizations. It bridges the individual and organizational knowledge, improving the absorptive and innovation capacity and thus leading to sustained competitive advantage of companies as well as individuals. Knowledge sharing is part of the knowledge management process.
Volatilité stochastiqueLa volatilité stochastique est utilisée dans le cadre de la finance quantitative, pour évaluer des produits dérivés, tels que des options. Le nom provient du fait que le modèle traite la volatilité du sous-jacent comme un processus aléatoire, fonction de variables d'états telles que le prix du sous-jacent, la tendance qu'a la volatilité, à moyen terme, à faire revenir le prix vers une valeur moyenne, la variance du processus de la volatilité, etc.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Local volatilityA local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant (i.e. a trivial function of and ). Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.
Lattice model (finance)In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is required at "all" times (any time) before and including maturity. A continuous model, on the other hand, such as Black–Scholes, would only allow for the valuation of European options, where exercise is on the option's maturity date.
Imprimeriethumb|Johannes Gutenberg, inventeur de la presse mécanique à caractère alphabétique mobile métallique à partir de 1450. L'imprimerie est un ensemble de techniques permettant la reproduction en grande quantité, sur support matériel, d'écrits et d'illustrations, cela afin d'en permettre une distribution de masse. Généralement, on utilise des supports plans et la matière la plus utilisée est le papier ou le textile. Ces techniques forment ce que l'on appelle communément la chaîne graphique.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.