Carte autoadaptativeLes cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».
Transformateur électriqueUn transformateur électrique (parfois abrégé en « transfo ») est une machine électrique permettant de modifier la tension efficace délivrée par une source d'énergie électrique alternative, une transformation qu'il effectue avec un excellent rendement. On distingue les transformateurs statiques et les commutatrices. Dans un transformateur statique, l'énergie est transférée du primaire au secondaire par l'intermédiaire du circuit magnétique que constitue la carcasse du transformateur.
Transformer typesA variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts. This is the most common type of transformer, widely used in electric power transmission and appliances to convert mains voltage to low voltage to power electronic devices. They are available in power ratings ranging from mW to MW. The insulated laminations minimizes eddy current losses in the iron core.
Système d'exploitationEn informatique, un système d'exploitation (souvent appelé OS — de l'anglais operating system — ou parfois SE — en français) est un ensemble de programmes qui dirige l'utilisation des ressources d'un ordinateur par des logiciels applicatifs. Il reçoit des demandes d'utilisation des ressources de l'ordinateur de la part des logiciels applicatifs. Le système d'exploitation gère les demandes ainsi que les ressources nécessaires évitant les interférences entre les logiciels.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Système d'exploitation mobilealt=Système d'exploitation mobile MeeGo|vignette|Système d'exploitation mobile MeeGo |253x253px Un système d'exploitation mobile est un système d'exploitation conçu pour fonctionner sur un appareil mobile. Ce type de système d'exploitation se concentre entre autres sur la gestion de la connectivité sans fil et celle des différents types d'interface. thumb|250px|Parts de marché des systèmes d'exploitation mobiles sur smartphone au deuxième trimestre 2011.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.