Alice et Bobthumb|Schéma de communication entre Alice et Bob intercepté par Mallory Les personnages Alice et Bob sont des figures classiques en cryptologie. Ces noms sont utilisés au lieu de « personne A » et « personne B » ; Alice et Bob cherchent dans la plupart des cas à communiquer de manière sécurisée. Ces noms ont été inventés par Ron Rivest, Adi Shamir et Leonard Adleman pour leur article de 1978 dans le Communications of the ACM qui présentait le cryptosystème RSA (le rapport technique de 1977 sur RSA n'utilisait pas encore ces noms).
Endomorphisme de FrobeniusEn mathématiques, l'endomorphisme de Frobenius, nommé ainsi en l'honneur de Georg Ferdinand Frobenius, est un endomorphisme d'anneau commutatif défini de façon naturelle à partir de la caractéristique. Il est particulièrement utilisé dans le contexte de la théorie de Galois, soit dans le cas des corps de caractéristique non nulle et plus spécifiquement dans le cas des corps finis et dans la théorie des corps de classes. Si le corps est fini, il s'agit alors d'un automorphisme.
Analyse fréquentielleL’analyse fréquentielle, ou analyse de fréquences, est une méthode de cryptanalyse dont la description la plus ancienne est réalisée par Al-Kindi au . Elle consiste à examiner la fréquence des lettres employées dans un message chiffré. Cette méthode est fréquemment utilisée pour décoder des messages chiffrés par substitution, dont un exemple très simple est le chiffre de César. L'analyse fréquentielle est basée sur le fait que, dans chaque langue, certaines lettres ou combinaisons de lettres apparaissent avec une certaine fréquence.
Communications securitysecurity is the discipline of preventing unauthorized interceptors from accessing telecommunications in an intelligible form, while still delivering content to the intended recipients. In the North Atlantic Treaty Organization culture, including United States Department of Defense culture, it is often referred to by the abbreviation COMSEC. The field includes cryptographic security, transmission security, emissions security and physical security of COMSEC equipment and associated keying material.
Corps de décompositionEn mathématiques et plus précisément en algèbre dans la théorie des corps commutatifs, un corps de décomposition, ou parfois corps des racines ou encore corps de déploiement, d'un polynôme P non nul est une extension de corps minimale sur laquelle P est scindé. On montre qu'un polynôme non nul possède toujours un corps de décomposition, unique à isomorphisme près, et que celui-ci est une extension finie et normale. Si de plus le polynôme est séparable, c'est une extension de Galois.
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.
Mise en gageEn cryptologie, la mise en gage () est un processus qui permet à une personne de « mettre en gage » une valeur (ou un énoncé) tout en la maintenant cachée aux autres, avec la possibilité de révéler cette valeur plus tard en prouvant que c'est bien la valeur qui avait été mise en gage. La mise en gage est conçue de telle sorte que la personne est liée à la valeur mise en gage. En pratique, la mise en gage se fait en calculant une valeur de mise en gage à partir de la valeur que l'on veut cacher et en communiquant cette valeur de mise en gage à un destinataire.
Cas pathologiquedroite|vignette|La fonction de Weierstrass est une fonction continue nulle part dérivable. En mathématiques, un objet pathologique est un objet qui s'oppose à l'intuition que l'on a de la situation générale. Par exemple, la fonction de Weierstrass, qui est une fonction continue nulle part dérivable, peut être considérée comme pathologique car elle s'oppose à l'intuition que l'on a des fonctions continues. Ainsi, Henri Poincaré écrit à leur sujet : Objet exceptionnel Position générale Catégorie:Vocabulaire d