Superconducting wireSuperconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
Superconducting magnetA superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings.
SupraconductivitéLa supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Unconventional superconductorUnconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions. The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich. For a long time it was believed that CeCu2Si2 was a singlet d-wave superconductor, but since the mid 2010s, this notion has been strongly contested. In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13, UPt3 and URu2Si2.
Limiteur de courant de défautLes limiteurs de courant de défaut sont des appareils électriques permettant de limiter la valeur du courant en cas de défaut électrique et notamment de court-circuit. Ces derniers sont en effet beaucoup plus élevés que les courants nominaux, ce qui impose de nombreuses contraintes dans le dimensionnement des autres appareils électriques d'un poste électrique. Par ailleurs, la valeur du courant de court-circuit augmente avec le nombre de centrales électriques connectées au réseau, il est donc possible que les équipements d'un poste ne soient plus adaptés aux contraintes en matière de court-circuit s'ils sont anciens.
Bloc fonctionnelvignette|Schéma fonctionnel comportant un générateur de tension idéal et une résistance. La modélisation par blocs fonctionnels simplifie la description du comportement d'un système physique distribué en le réduisant à un graphe (ou « topologie ») constitué d’éléments séparés, les blocs fonctionnels. Elle intervient dans les domaines les plus variés, depuis le réseau de distribution à la linguistique en passant par les circuits (thermiques, électriques ou électroniques, pneumatiques, hydrauliques), les robots, l'acoustique, etc.
Circuit électriquevignette|Circuit électrique à Calcutta, Inde. Un circuit électrique au sens matériel est un ensemble simple ou complexe de composants électriques ou électroniques, y compris des simples conducteurs, parcourus par un courant électrique. Au sens de la théorie des circuits, un circuit électrique est une abstraction des configurations matérielles, un agencement d'éléments définis par des relations mathématiques, reliés par des conducteurs idéaux. L'étude électrocinétique d'un circuit électrique consiste à déterminer, à chaque endroit, l'intensité du courant et la tension.
Equivalent circuitIn electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of the original circuit as well.
Technological applications of superconductivityTechnological applications of superconductivity include: the production of sensitive magnetometers based on SQUIDs (superconducting quantum interference devices) fast digital circuits (including those based on Josephson junctions and rapid single flux quantum technology), powerful superconducting electromagnets used in maglev trains, magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) machines, magnetic confinement fusion reactors (e.g.