Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this PhD thesis, we construct an explicit algebraic model over Z of the cochains of the free loop space of a 1-connected space X. We start from an enriched Adams-Hilton model of X, which can be obtained relatively easily when X is the realisation of a simplicial set. Note it is not supposed that the Steenrod algebra acts trivially on X. The second part is dedicated to the construction of a model of the cochains of mapping spaces XY. where X is r-connected and Y is a CW-complex that has dimension less or equal to r. The space X must possess commutative models for the cochains of each Ωk X for k ≤ r. We first construct an algebraic model for the cochains of XSn ∀n ≤ r, then we then glue all of them to obtain a model of the cochains of XY. We give examples for each of these situations. The techniques used here rely heavily on the concept of a twisted bimodule. A description of this can be found in [DH99b].