Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Multidimensional discrete convolutionIn signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers. Similar to the one-dimensional case, an asterisk is used to represent the convolution operation.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
PropriétéLa propriété est la possession d'un bien meuble ou immeuble ou d'une production intellectuelle, reconnue et consacrée par une autorité (divine ou humaine), la société, la loi, la raison générale ou le consentement universel C'est selon Pierre-Joseph Proudhon une usucapion ou une usurpation. La Révolution française a exalté le droit de propriété : inviolable et sacrée, selon l'article 17 de la Déclaration des droits de l'homme et du citoyen de 1789.
Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
Cis (mathematics)is a mathematical notation defined by cis x = cos x + i sin x, where cos is the cosine function, i is the imaginary unit and sin is the sine function. The notation is less commonly used in mathematics than Euler's formula, eix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries. The cis notation is a shorthand for the combination of functions on the right-hand side of Euler's formula: where i2 = −1. So, i.e.